The AMADEOS SysML Profile for Cyber-physical Systems-of-Systems

P. Lollini
• AMADEOS Conceptual modeling
 • Basic concepts and their relationships
 • Viewpoints-driven approach

• From Conceptual to SysML modeling
 • High-level representation
 • Semi-formalization into the AMADEOS profile
 • Application to toy example

• Conclusions
A Conceptual Model

- It expresses the **meaning of terms** and **concepts** used by domain experts to discuss the problem.
- It ensures that problems with different interpretations of the terms and concepts cannot occur.
- It is the basis for subsequent development of applications in a domain.
The AMADEOS conceptual model

- Establishing a domain specific ontology on Cyber-physical Systems-of-Systems, serving as a vocabulary for the domain of discourse

- Forming a reference for the AMADEOS work
 - Supporting the definition of a reference architecture for SoSs
 - Supporting the definition of methodologies and techniques to be proved in a concrete case study on smart energy grids
Basic concepts and relationships

• Definition of **basic** SoS concepts
 • Not domain specific
 • Applicable to any SoS

• Definition of **relationships** among basic SoS concepts
SoS Basic concepts

High-level representation

Semi-formalization
Viewpoints composing the model

- Basic concepts defined according to 7 viewpoints
 - Structure
 - Dynamicity
 - Evolution
 - Dependability and Security
 - Time
 - Multi-criticality
 - Emergence

- Viewpoints represent core AMADEOS issues

- Concepts (and viewpoints) have been integrated by defining their relationships

- Viewpoints approach facilitate the conceptual modeling itself and the design process
High-level representation

• Explicates relations among basic SoS concepts per viewpoint

• Supports their graphical visualization

• Semantic
 • **Boxes** represent concepts
 • **Arrows** represents semantic relationships among concepts (labels in natural language)
Relating basic SoS concepts in Structure view

• “System-of-Systems (SoS): An SoS is an integration of a finite number of constituent systems (CS) which are independent and operable, and which are networked together for a period of time to achieve a certain higher goal.”

• “Constituent System (CS): An autonomous subsystem of an SoS, consisting of computer systems and possibly of a controlled objects and/or human role players that interact to provide a given service.”
Dynamicity: The property of an entity that is constantly changing in terms of offered services, built-in structure and interactions with other entities.

Managed SoS evolution: Process of modifying the SoS to keep it relevant in face of an ever-changing environment.

Business value: Overarching concept to denote the performance, impact, usefulness, etc. of the functioning of the SoS.
• “Critical service: A critical service is the service of a system that requires a specific criticality level.”

• “Criticality level: The criticality level is the level of assurance against failure.”
Clock: A (digital) clock is an autonomous system that consists of an oscillator and a register. Whenever the oscillator completes a period, an event is generated that increments the register.

Reference clock: A hypothetical clock of a granularity smaller than any duration of interest and whose state is in agreement with TAI.

Emergence: A phenomenon of a whole at the macro-level is emergent if and only if it is new with respect to the non-relational phenomena of any of its proper parts at the micro level.

Weak emergence: …if a trans-ordinal law that explains the occurrence of the emergent phenomenon at the macro level out of the properties and interactions of the parts at the adjacent micro level is known.

Strong Emergence: …if, after a careful analysis of the emergent phenomenon, no trans-ordinal law that explains…. is known (at least at present).
Towards a semi-formal representation

- Describe AMADEOS viewpoints via a SysML profile

- UML-like representation
 - Improve the understanding by using different levels of abstraction and different views
 - Foster information sharing and reuse among SoS stakeholders
 - Enable analysis and experimentation at early stage of the SoS lifecycle process
AMADEOS Profile: Rationale

- A SysML profile to implement SoS basic concepts and their relationships
 - Strong focus on conceptual modelling
 - Capturing both SoS static structure and dynamic behavior
- The profile makes use of
 - New added constructs
 - Constructs already available in related profiles (MARTE, CONCERTO)
- Organized in viewpoints driven-components
- Profile implementation
 - Open source Eclipse integrated development environment along with Papyrus plug-in
• Starting from the high-level graphical representation of Structure…

• ...we implemented three SysML profile components:
 • SoSArchitecture component
 • SoSCommunication component
 • SoSInterface component
Dynamics / Evolution
Toy Example: Smart Grid Household

• Applying the profile to a toy example to check:
 • soundness of a subsets of semi-formalized concepts
 • which concepts were missing

• Toy Example
 • Improving the efficiency and the reliability of the production and distribution of electricity in a Smart Grid
 • Keeping production and consumption rate as much balanced as possible for a set of connected households
 • Electronic appliances forward requests of energy by interacting with higher-level sub-systems which decides to grant or deny each request
Toy Example: structure view
AMADEOS profile – possible applications

• Model-based definition of an SoS with AMADEOS profile
 • Platform Independent Model of an SoS

• Platform-Specific Models can be defined and used at different stages of system design and validation (MDE approaches)

• The profile can be integrated into existing SysML MDE tool-chain platforms, such as CONCERTO, Eclipse, to perform e.g.
 • System analysis
 • E.g. Hazard Analysis (HA), Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis (FTA), etc.
 • Source code generation
 • System testing
Profile application for supporting HA

• Hazard Analysis application example
 • Typically it identifies and mitigates hazards leading to detrimental situations
 • In our case, it supports the identification of emergent conditions based on the information exchanged through the interfaces

• Input:
 • Events and interfaces

• Output
 • Identification of consequences and emergent behaviors
Workflow: Profile application

Step 1
- SoS Profile
- Smart Grid Model

Step 2
- Internal

Step 3
- Set of Events
Workflow: Interface Identification

Step 1

- SoS Profile
- Smart Grid Model

Step 2

- Internal Interfaces

Interface among Constituent Systems	ID Interface
EMG and Coordinator | INT_01 |
Coordinator and DSO | INT_02 |
Smart meter and Meter Aggregator | INT_03 |
Meter Aggregator and DSO | INT_04 |
Command Display and EMG | INT_05 |
Command Display and Smart meter | INT_06 |
Smart Meter and Flexible load | INT_07 |
Smart Meter and EMG | INT_08 |
EMG and Flexible load | INT_09 |
PEL EMG and Coordinator | INT_10 |

Interface Analysis

<table>
<thead>
<tr>
<th>Id int</th>
<th>Guideword</th>
<th>Id cons</th>
<th>mitig</th>
</tr>
</thead>
<tbody>
<tr>
<td>INT_01</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>INT_03</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>INT_09</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>INT_10</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Workflow: Events

Event Description

Event1 A new functionality is added to the command display HMI. The latter can send a message to EMG containing the name/type of electrical appliance involved.

Event2 A new EMG is connected to the Smart Grid to support the provision of energy for public event lighting.
Workflow: Hazards identification

<table>
<thead>
<tr>
<th>Id Event</th>
<th>Id Interface</th>
<th>Guideword</th>
<th>Hazard</th>
<th>Emergent Behavior</th>
<th>Consequence</th>
<th>Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event 1</td>
<td>INT_05</td>
<td>More</td>
<td>EMG receives additional information from the new Command Display on the electrical appliance switched on</td>
<td>YES - beneficial</td>
<td>EMG can forward additional information to the Coordinator for better balancing the Smart Grid</td>
<td>not needed</td>
</tr>
<tr>
<td>Event 2</td>
<td>INT_10</td>
<td>More</td>
<td>The Coordinator receives a request for a very high amount of energy to support the public event lighting</td>
<td>YES - detrimental</td>
<td>Coordinator, in order to keep balanced production and consumption values, decides to limit the provision of energy for the electrical appliances</td>
<td>MIT_03: EMG can communicate the energy decrease to the Command Display (INT_05). The latter supports the reconfiguration of the electrical appliances</td>
</tr>
</tbody>
</table>
Conclusion

- Viewpoint-based conceptual modeling
 - Basic SoS concept definition
 - Representation of their semantic relationships
 - SysML semi-formalization: AMADEOS profile

- Vision for the Applicability of the profile for SoS description and analysis

- Conceptual model refinement to be continued until the end of the project
Thank You for Your attention