Contract-based design, model checking, and model-based safety assessment
An integrated view

Alessandro Cimatti
Fondazione Bruno Kessler, Trento, Italy
Take away message

• Beyond model checking: new generation of verification techniques
• Tools integrated into structured flow
• May provide novel support for CPSoS design challenges

• From model checking to ...
 • Contract-based design
 • architectural decomposition + refinement of requirements
 • Safety analysis
 • Extend nominal model to include faulty behaviours
 • Fault Tree construction: detect all fault combinations causing loss of desirable property
From architectural decomposition to contract-based design

- Hierarchical decomposition
 - Component to subcomponents
 - Implementation of leaf components
- Component associated with contracts
 - Assumptions / guarantees
 - Temporal logic
- Contracts refinement
 - Contract ensured by contract of subcomponents
- Correct implementations ensure correctness of composition
Model-based safety assessment

• Safety assessment
 – Analyze behaviour of system under faults
 – Artifacts: Fault Trees, FMEA tables
 – Qualitative and quantitative arguments

• Model-based Safety Assessment
 – Extend nominal model with faults
 • Symbolic fault injection
 • Valve stuck open, stuck closed, ...
 – Analyze extended model
 • Automated production of FT
Formal Verification, Validation, and Safety Assessment

\[M \models \varphi \]

Model Checking

Verification & Validation

Safety Assessment
Formal Verification, Validation, and Safety Assessment

\[\mathcal{M} \models \varphi \quad \mathcal{M} \Rightarrow \mathcal{M}[F] \]

Model Checking \quad \text{Fault Injection}

Verification & Validation \quad \text{Safety Assessment}
Formal Verification, Validation, and Safety Assessment

Model Checking: $M \models \varphi$

Fault Injection: $M \Rightarrow M[\mathcal{F}]$

Model-Based Safety Assessment: $\delta(\mathcal{F}) : M[\mathcal{F}] \not\models \varphi$

Verification & Validation

Safety Assessment
Formal Verification, Validation, and Safety Assessment

Model Checking: \(M \models \varphi \)

Fault Injection: \(M \Rightarrow M[F] \)

Model-Based Safety Assessment: \(\delta(F): M[F] \not\models \varphi \)

Verification & Validation

Safety Assessment
Formal Verification, Validation, and Safety Assessment

Contract-Based Design

Compositional

Model Checking

Monolithic

Verification & Validation

\[\mathcal{M} \models \varphi \]

\[\mathcal{M} \Rightarrow \mathcal{M}[\mathcal{F}] \]

\[\delta(\mathcal{F}) : \mathcal{M}[\mathcal{F}] \not\models \varphi \]

Fault Injection

Model-Based Safety Assessment

Safety Assessment

October 6, 2015

CPSoS @ Artemis Tech Conference, Torino, Italy
Formal Verification, Validation, and Safety Assessment

Contract-Based Design

Model Checking

\[M \models \varphi \]

Fault Injection

\[M \Rightarrow M[\mathcal{F}] \]

Model-Based Safety Assessment

\[\delta(\mathcal{F}) : M[\mathcal{F}] \not\models \varphi \]

Compositional

Monolithic

Verification & Validation

Safety Assessment

October 6, 2015
Formal Verification, Validation, and Safety Assessment

Contract-Based Design

Model Checking

\[M \models \varphi \]

Fault Injection

\[M \rightarrow M[\mathcal{F}] \]

Model-Based Safety Assessment

\[\delta(\mathcal{F}) : M[\mathcal{F}] \not\models \varphi \]

Compositional

Monolithic

Verification & Validation

Safety Assessment

October 6, 2015

CPSoS @ Artemis Tech Conference, Torino, Italy
Tool chain

• Infinite-state transition systems
 • The **OCRA** tool for contract-based design
 • http://ocra.fbk.eu/
 • The **nuXmv** model checker
 • http://nuxmv.fbk.eu/
 • The **xSAP** platform for safety analysis
 • http://nuxmv.fbk.eu/

• Hybrid systems
 • **HyCOMP** as a model checker
 • http://hycomp.fbk.eu/
A Wheel Brake System

• Control brake for aircraft wheels

• Redundancy
 • Multiple BCSU
 • Hydraulic plants

• Functions
 • Asymmetrical braking
 • Antiskid
 • Single wheel/coupled
 • depending on control mode
Applications

• Joint project with Boeing on MBSA
 • Formal Design and Safety Analysis of AIR6110 Wheel Brake System [CAV’15]

• Adopted in NASA project on analysis of NextGen
 • Comparing Different Functional Allocations in Automated Air Traffic Control Design [FMCAD’15]

• The COMPASS tool chain
 • AADL modeling language
 • Several projects funded by the European Space Agency
 • Specific design technique for FDIR
Automated Formal Analysis of Architectures for Reliability
Architectures for Reliability

Power System Example

in a perfect world ...in the real world
Automated Analysis of Architectures for Reliability

• In 1996 (PFC 777 Paper):

 Rigorous mathematical proof of algorithms to cope with the Byzantine generals problem is not possible for any triple redundant system [5].

• Current techniques:
 – M. Bozzano, A. Cimatti, and C. Mattarei “Automated Analysis of Reliability Architectures”, ICECCS 2013
Automated Analysis of Architectures for Reliability

Inputs

Formal Model (of a Real Architecture)

Outputs

Faults
Automated Analysis of Architectures for Reliability

Inputs

\[\text{Formal Model} \]
\[\text{(of a Real Architecture)} \]

\[\ldots \]

Faults

\[\ldots \]

Outputs

Inputs

\[\text{Formal Model} \]
\[\text{(of a Real Architecture)} \]

\[\ldots \]

Faults

\[\ldots \]

Outputs
Automated Analysis of Architectures for Reliability

- Formal Model (Reference)
- Formal Model (Faulty)
- Faults
- Inputs
- Outputs
- FALSE
Automated Analysis of Architectures for Reliability
Automated Analysis of Architectures for Reliability
Automated Analysis of Architectures for Reliability

Inputs

Formal Model (Reference)

FALSE

Formal Model (Faulty)

Outputs

Faults
Automated Analysis of Architectures for Reliability

Inputs

Formal Model (Reference)

FALSE

Formal Model (Faulty)

... Faults

Outputs

Miter Composition
Miter composition:
Formal Safety Assessment

?? All assignments to Faults such that
• At least one output = FALSE
• All but one output = FALSE
• At least two outputs = TRUE
• ...

Inputs

\[\ldots\]

\[\vdots\]

\[\ldots\]

\[\vdots\]

Faults

\[\ldots\]

Outputs

Formal Model

(Miter composition)
Formal Safety Assessment: Possible Artifacts

Fault Tree
Formal Safety Assessment: Possible Artifacts

Fault Tree

Reliability Function

\[F_{sys} : \mathbb{R}^{[0,1]} \times \ldots \times \mathbb{R}^{[0,1]} \mapsto \mathbb{R}^{[0,1]} \]

\[F_{sys}(F_v, F_{m1}, F_{m2}, F_{m3}) = \]

\[F_v + \]

\[+(1 - F_v) \cdot F_{m1} \cdot F_{m2} \]

\[+(1 - F_v) \cdot F_{m1} \cdot (1 - F_{m2}) \cdot F_{m3} \]

\[+(1 - F_v) \cdot (1 - F_{m1}) \cdot F_{m2} \cdot F_{m3} \]
Figure 10 PFC Lane Redundancy Management (Output Signal Monitoring)
Conclusions and Perspective

• Conclusions
 • New generation of verification techniques
 • Tools integrated into comprehensive process
 • Production of interesting artifacts from unique model

• Perspectives
 • Support to design space exploration
 • Design space as parameterized system
 • Comparison based on safety artifacts
 • More fine grained
 • Analysis of reliability architectures