Medium-term Research and Innovation Priorities in Cyber-physical Systems of Systems

Sebastian Engell
Process Dynamics and Operations Group
TU Dortmund
Germany
• Distributed management of cyber-physical systems of systems
• Engineering support for the design-operation continuum of cyber-physical systems of systems
• Cognitive CPSoS with innovative use of the large amounts of data that are collected in CPSoS
Methodological:

• System integration and dynamic reconfiguration
• Robust distributed system-wide control and optimization
• Resilience in systems of systems
• Overcoming the modelling bottleneck
• Humans in the loop
• Towards cognitive systems: data-based system operation
Application-driven:

• Integration of control, scheduling, planning and demand-side management
• New ICT infrastructures for adaptable, resilient, and reconfigurable manufacturing processes
• Development and exploitation of ICT to support multi-disciplinary, multi-objective optimization of operations in dynamic, 24/7 systems
• Safe, secure and trusted autonomous operations for systems with humans in the loop
System Integration and Dynamic Reconfiguration

- Dynamic requirements engineering
- Plug-and-play integration and live removal of components
- Configuration control
- Incremental live validation of modifications to the system
- Integrated engineering over the full life-cycle
- Reference architectures, open platforms and easy-to-test interfaces for integration, semantic integration to simplify the interactions of existing systems as well as the deployment of new systems
• Coordination mechanisms for systems with autonomously managed units
• Understanding how the management and control structure (centralized, hierarchical, distributed, clustered) influences system performance and robustness
• Dealing with uncertainty, neglected couplings, stochastic effects, user interactions
• Combining model-based and data-based optimization
• Involvement of humans
Resilience in Systems of Systems

- Strategies for system-wide fault detection and mitigation
- Integrated cross-layer handling or disturbances and break-downs
- Advanced integrated monitoring of the state of the system and triggering of preventive maintenance to improve long-term performance
Overcoming the Modelling Bottleneck

- Faster model development and better model reuse, automated modelling
- Model maintenance and adaptation
- Collaborative environments for model exchange between competing companies, trust in models from others
- Integration of legacy system models
- Combination of models of different depth and different formalisms in system-wide models of CPSoS, co-simulation, hierarchical modeling, appropriate levels of abstraction
- Meta-modelling and model management to ensure model consistency
- Modelling over the full life cycle of the system
- Combination of model- and data-based optimization
- Economic / socio-technical modelling
Humans in the Loop

• Filtering and appropriate presentation of information to human users and operators for the acceptance of advanced computer-based solutions

• Investigation of the human capacity of attention and of measures to provide motivation for sufficient attention and consistent decision making

• Analysis of the cognitive models of system operators

• Monitoring of the actions of the users and anticipating their behaviours and their situation awareness

• Social phenomena (dynamics of user groups)

• Combination of the capabilities of humans and algorithms in real-time monitoring and decision making (collaborative decision making and control, e.g. autonomous cars)
Towards Cognitive Systems: Data-based System Operation

- On-line data stream analysis to monitor the system performance, to detect faults and degradation, and to identify characteristic situations
- Combination of (semi-)rigorous and data-based models
- Data-based prediction and its use for control and optimization
- Visualization of the results of online data analysis
- Automatic reconfiguration and adaptation, learning good operation patterns from past examples
- Trust in data
• New ICT infrastructures for adaptable, resilient, and reconfigurable manufacturing processes
 – Seamless and low-effort reconfiguration of manufacturing systems for fast adaptation to changing customer demands
 – Self-adaptation of production machines and robots
 – Semantic system integration of decentralized manufacturing systems across the complete value chain

• Data and information visualization for decision support in manufacturing
 – Automatic extraction of crucial indicators from large amounts of data
 – New HMI paradigms for responsive data visualization to maximize the real-time situational awareness of human operators
Transportation and Logistics

• Development and exploitation of ICT to support multi-disciplinary, multi-objective optimization of operations in complex, dynamic, 24/7 systems
 – Improve capacity, efficiency and reduce cost
 – Maintain continuous operation and provide resilience to disruption and failures
 – Reduce emissions

• Safe, secure and trusted autonomous operations for systems with humans in the loop
 – What systems should be made autonomous and what should be left to the human operator?
 – Homogeneous HMIs
 – Societal acceptance, trust, privacy
 – Liability
Integration of control, scheduling, planning and demand-side management

- Interaction of large consumers with the grid
- Mechanisms for achieving system-wide optimality (e.g., for minimizing the CO₂ footprint)
- Coordination and decision making under uncertainty
- Trans-layer integration inside the production system
 - Exchange of information between models on different levels
 - Integration of different software tools used at different levels
Summary

- Cyber-physical systems of systems are the next challenge
- **IoT + CPS = CPSoS**
- From management and engineering of isolated systems to large-scale distributed interacting systems of systems
- From hierarchical decision structures to coordinated autonomous systems
- From the design V to incremental systems engineering
- From data visualization to cognitive systems
- From systems with an HMI to synergetic interactions of cyber-physical systems and human users and operators
Thank you very much for your attention!

www.cpsos.eu