Management and Control of Cyber-physical Systems of Systems

Radoslav Paulen
TU Dortmund, Germany
Examples: Industrial Symbiosis

CPSoS is supported by the European Commission under the 7th Framework Programme for Research & Technological Development (2007-2013) - ICT theme

Courtesy: Mark Lewis, Nepic, UK
Examples: Industrial Sites

Legend:
- Stock
- Intermediate Production Units
- Final Production Units
- Import / Export from / to External Market

CPSoS is supported by the European Commission under the 7th Framework Programme for Research & Technological Development (2007-2013) - ICT theme.
Examples: Electrical Grid

- Supports distributed energy resource deployment
- Enables self-healing and autonomous restoration
- Allows for bi-directional flow of energy and information
- Enhances security of supply and power quality
- Minimizes investment and operations costs
- Protects against technical and commercial losses
- Reduces maintenance and intervention

Courtesy: HEP-ODS, Croatia

CPSoS is supported by the European Commission under the 7th Framework Programme for Research & Technological Development (2007-2013) - ICT theme
Examples: Smart Buildings

A Smart Grid Needs Smart Buildings

Power and Bi-directional Data Communication
- Dynamic Pricing
- Curtailment Signals
- Load Forecasts
- Capacity Bids
- Emission Reduction Info

PHEV Parking Deck

Renewable Energy

Combined Heat and Power Plant

Internet

Solar PV

HVAC

Security

Lighting

Information Technology

Electrical Storage

Thermal Storage

Institute for Building Efficiency

Courtesy: Institute for Building Efficiency

CPSoS is supported by the European Commission under the 7th Framework Programme for Research & Technological Development (2007-2013) - ICT theme
Examples: Charging of EVs
Challenges

• Decision structures and system architectures
 — What are the most suitable management and control mechanisms for certain classes of CPSoS?

• Coordination mechanisms for systems with autonomously managed units

• Understanding how the management and control structure (centralized, hierarchical, distributed, clustered) influences system performance, robustness and stability

• Dealing with uncertainty, neglected couplings, stochastic effects, user interactions
Management of cyber-physical systems of systems that are constituted of a (moderate to large) number of complex sub-systems:

• Which possess partial local autonomy
• Are tightly interconnected by streams of material and energy
• Examples:
 – Electric power grid
 – Electric vehicles charging
 – Chemical plants
DYMASOS Consortium

Chemical production and operation

DYMASOS
Funded by the European Union under FP7

Electric power distribution systems

CPSoS is supported by the European Commission under the 7th Framework Programme for Research & Technological Development (2007-2013) - ICT theme
Management and Control Methods

• Population Control
 – Coordinated distributed convergence to Nash equilibrium in non-cooperative large-scale multi-agent CPSoS

• Market-based Methods
 – Coordinated distributed convergence to social optimum of cooperative multi-agent CPSoS

• Coalitional Control
 – Local interactions to converge towards a coalitional equilibrium in semi-cooperative multi-agent CPSoS
References

• S. Wenzel, R. Paulen, S. Krämer, B. Beisheim, S. Engell, Shared resource allocation in an integrated petro-chemical site by price-based coordination using quadratic approximation. In 2016 European Control Conference (ECC), Aalborg, Denmark, 2016

• S. Lucia, M. Kögel, R. Findeisen, Contract-based predictive control of distributed systems with Plug and Play capabilities, 5th IFAC Conference on Nonlinear Model Predictive Control NMPC 2015 Seville, Spain, pp. 205-211, 2015
