Set-Based Simulation with SpaceEx

Goran Frehse, Olivier Lebeltel, Thao Dang, Oded Maler
Univ. Grenoble Alpes / CNRS – Verimag, France

Alexandre Donzé
UC Berkeley, USA

Colas Le Guernic
DGA, France

Antoine Girard
Laboratoire Jean Kuntzmann, France

CPSoS Workshop, Vienna, April 11, 2016
Example: Tunnel Diode Oscillator

- What are good parameters?
 - startup conditions
 - parameter variations
 - disturbances

\[V_d = \frac{1}{C} \left(- I_d(V_C) + I_L \right) \]
\[I_L = \frac{1}{L} \left(- V_C - RI_L + V_{in} \right) \]

Dang, Donze, Maler, FMCAD’ 04
Example: Tunnel Diode Oscillator

\[R = 0.20 \Omega \Rightarrow \text{Oscillation} \]
Example: Tunnel Diode Oscillator

\[R = 0.24 \Omega \Rightarrow \text{Stable equilibrium} \]
Example: Tunnel Diode Oscillator

- Jitter measurement
 - add clock that is reset at zero crossing
Example: Tunnel Diode Oscillator

Analog/Mixed Signal Circuit

Formal Model

Reachability Analysis

Guaranteed Safety Property

- Oscillation
- Jitter
- ...

\[\dot{V}_C = \frac{1}{C} \left(-I_d(V_C) + I_L \right) \]
\[\dot{I}_L = \frac{1}{L} \left(-V_C - R I_L + V_{in} \right) \]
Outline

● Modeling with Hybrid Automata
● Reachability versus Simulation
● Computing with High-Dimensional Sets
● SpaceEx Verification Platform
Hybrid Automaton Model

- **Initial conditions**
 \[x = x_0 \]
 \[v = 0 \]

- **Free fall**
 \[x \geq 0 \]
 \[\dot{x} = v \]
 \[\dot{v} = -g \]

- **Location**
 \[x = x_0 \]

- **Invariant**
 \[x \geq 0 \]

- **Flow**
 \[\dot{x} = v \]
 \[\dot{v} = -g \]

- **Discrete transition**
 \[x = 0 \land v < 0 \]
 \[v := -cv \]

- **Guard**
 \[x = 0 \land v < 0 \]

- **Label**
 \[x = 0 \land v < 0 \]

- **Reset**
 \[v := -cv \]
Semantics

- alternating sequence
 - time elapse (ODEs)
 - jumps (intersection with guard, affine map)
Example: Bouncing Ball

- **States over States = State-Space View**

 position x

 x_0
 $x_0(t)$

 behavior from single initial state

 velocity v
 $x_1(t)$
 $x_2(t)$
 0
Example: Bouncing Ball

- Reachability in State-Space

position x

behaviors from set of initial states = reachable states

velocity v
Outline

● Modeling with Hybrid Automata
● Reachability versus Simulation
● Computing with High-Dimensional Sets
● SpaceEx Verification Platform
Reachability in Model Based Design

- Plant Model
- Controller Synthesis
- Simulation
- Deployment
- Reachability
Example: Controlled Helicopter

- 28-dim model of a Westland Lynx helicopter
 - 8-dim model of flight dynamics
 - 20-dim continuous H_∞ controller for disturbance rejection
 - stiff, highly coupled dynamics

Simulation vs Reachability

- **Simulation**
 - approximative sample of *single* behavior
 - over finite time

- **Reachability**
 - over-approximative set-valued cover of *all* behaviors
 - over finite or infinite time

vertical speed

simulation run

reachable states over time
Simulation vs Reachability

● Simulation
 - deterministic
 • resolve nondet. using Monte Carlo etc.
 - scalable for nonlinear dyn.

● Reachability
 - nondeterministic
 • continuous disturbances...
 • implementation tolerances...
 - scalable for linear dynamics

vertical speed

Reachable set equiv. $>2^{28}$ corner case simulations
Outline

- Modeling with Hybrid Automata
- Reachability versus Simulation
- Computing with High-Dimensional Sets
- SpaceEx Verification Platform
Computing Reachable States

- Set-based integration can answer many interesting questions about a system
 - safety, bounded liveness,…

- Problems
 - in general termination not guaranteed
 - set-based integration of ODEs is hard

- Solution
 - piecewise linear approximations
 - algorithmic & math tricks (implicit set representations,…)

Time Elapse Computation

- Continuous time elapse for affine dynamics
 - efficient, scalable
 - approximation without accumulation of approximation error (wrapping effect)

- Much heritage from prior work
 - Chutinan, Krogh. HSCC’99
 - Asarin, Bournez, Dang, Maler. HSCC’00
 - Girard. HSCC’05
 - Le Guernic, Girard. HSCC’06, CAV’09
Affine Dynamics

- linear terms plus inputs U:

$$\dot{x} = Ax + u, \quad u \in U$$

- solution:

$$x(t) = e^{At}x(0) + \int_0^t e^{A(t-\tau)}u(\tau)d\tau$$

- matrix exponential

- factors influence of inputs

(stable system forgets the past)
Time-Discretization (no inputs)

- **Analytic solution:** \(x(t) = e^{At}x_{ini} \)
 - with \(t = \delta k \):
 \[
 x(\delta(k + 1)) = e^{A}\delta x(\delta k)
 \]

- **Explicit solution in discretized time (recursive):**
 \[
 x_0 = x_{ini}

 x_{k+1} = e^{A}\delta x_k
 \]

 multiplication with const. matrix \(e^{A}\delta \)
 = linear transform
Time-Discretization for an Initial Set

- Explicit solution in discretized time
 \[X_0 = X_{\text{Ini}} \]
 \[X_{k+1} = e^{A\delta} X_k \]

- Acceptable solution for purely continuous systems
 - \(x(t) \) is in \(\epsilon(\delta) \)-neighborhood of some \(X_k \)

- Unacceptable for hybrid systems
 - discrete transitions might “fire” between sampling times
 - if transitions are “missed,” \(x(t) \) not in \(\epsilon(\delta) \)-neighborhood
Time Discretization for Hybrid Systems

- One can miss jumps (guard)

![Diagram showing flowpipe and guard with annotations](image)
Bouncing Ball

Note: Computed in exact arithmetic, no numerical errors

In other examples this error might not be as obvious…
States in discrete time:

\[X_{k\delta} = (e^{A\delta})^k X_0 \oplus S_{k\delta} \]

integral over inputs

need to cover also states in between!
From Time-Discretization to Reach

- Cover in discrete time:

\[\Omega_{[k\delta,(k+1)\delta]} = (e^{A\delta})^{k} \Omega_{[0,\delta]} \oplus \Psi_{k\delta} \]

\[X_{0} \oplus \text{Minkowski sum = pointwise sum of sets} \]
Reachability in High Dimensions

- **Scalability Trick 1:**

 Use data structures adapted to operations
Scalable Set Representations

- **Ellipsoids** [Kurzhansky, Varaiya 2006]
 - bad representation of intersection, convex hull, flat sets

(this is an illustration, not actual computation)
Scalable Set Representations

- **Zonotopes** [Girard 2005]
 - symmetric polytope spanned by set of generator vectors
 - bad representation of intersection, convex hull, asymmetric sets

(computed with Zonotope toolbox of M. Althoff)
Scalable Set Representations

- **Support Functions** [Le Guernic, Girard 2009]
 - lazy representation of any convex set
 - gives outer polyhedral approximation that can be refined
 - scalable except for intersection

(low accuracy) (high accuracy)

(computed with SpaceEx)
Operations on Convex Sets

<table>
<thead>
<tr>
<th>Operators</th>
<th>Polyhedra</th>
<th>Zonotopes</th>
<th>Support F.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Constraints</td>
<td>Vertices</td>
<td></td>
</tr>
<tr>
<td>Convex hull</td>
<td>--</td>
<td>+</td>
<td>--</td>
</tr>
<tr>
<td>Affine transform</td>
<td>+/-</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Minkowski sum</td>
<td>--</td>
<td>--</td>
<td>++</td>
</tr>
<tr>
<td>Intersection</td>
<td>+</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Le Guernic, Girard. CAV’09
Support Functions

- Support Function $R^n \rightarrow R$
 - direction $d \rightarrow$ position of supporting halfspace
 \[\rho_P(d) = \max_{x \in P} d^T x \]
 - exact set representation
Support Functions

- black box representation of a convex set
- implementation: function objects
Support Functions

- black box representation of a convex set
- implementation: function objects
Support Functions

- black box representation of a convex set
- implementation: function objects

Direction vector → Support Function → Convex set

Direction vector → Support Function → Convex set
Example: Switched Oscillator

- **Scalability Measurements:**
 - fixpoint reached in $O(nm^2)$ time
 - box constraints: $O(n^3)$
 - octagonal constraints: $O(n^5)$
Reachability in High Dimensions

- **Scalability Trick 2:**

 Change data structures (data-dependent)
Computing Time Elapse

Support Functions

- Initial Set
- Convex Hull
- Linear Map
- Minkowski Sum

Polyhedra

- Initial Set
- Overapprox.
- Invariant Intersection
Computing Transition Successors

- **Intersection with guard**
 - use outer poly approximation

- **Linear map & Minkowski sum**
 - with polyhedra if invertible
 (map regular, input set a point)
 - otherwise use support functions

- **Intersection with target invariant**
 - use outer poly approximation
Computing Transition Successors

Support Functions
- Linear Map
- Minkowski Sum

Polyhedra
- Guard Intersection
- Linear Map
- Minkowski Sum
- Invariant Intersection

exact (LP)
overapprox.
Reachability in High Dimensions

- **Scalability Trick 3:**

 Clustering and containment (in Space-Time)
Approximation in Space-Time

Improve the approximation by adding time...
Approximation in Space-Time
Approximation in Space-Time
Approximation in Space-Time

Approximation constant over time interval
Support Function over Time

convex set per time interval =

piecewise constant scalar functions
Support Function over Time

- 1st order Taylor approx.

CAV’11

\[\Omega_t = (1 - \frac{t}{\delta}) \mathcal{X}_0 \oplus \frac{t}{\delta} e^{tA} \mathcal{X}_0 \]
\[\oplus (\frac{t}{\delta} \mathcal{E}_t^+ \cap (1 - \frac{t}{\delta}) \mathcal{E}_t^-) \]
\[\oplus tU \oplus \frac{t}{\delta} \mathcal{E}_t^- \]

\[\Phi_2(A, \delta) = A^{-2} (e^{tA} - I - \delta A) \]
\[\mathcal{E}_t^+(\mathcal{X}_0, \delta) = \Box (\Phi_2(|A|, \delta) \Box (A^2 \mathcal{X}_0)) , \]
\[\mathcal{E}_t^-(\mathcal{X}_0, \delta) = \Box (\Phi_2(|A|, \delta) \Box (A^2 e^{tA} \mathcal{X}_0)) , \]
\[\mathcal{E}_t^-(U, \delta) = \Box (\Phi_2(|A|, \delta) \Box (AU)) . \]

interpolation with

piecewise linear scalar functions
Support Function over Time

infinite union of template polyhedra
(one for each t)
Convexification

finite union of non-template polyhedra
(one for each concave piece)
Approximation in Space-Time

approximation piecewise linear over time
Approximation in Space-Time
Approximation in Space-Time
Approximation in Space-Time

non-template facet normals
Example: Bouncing Ball

Clustering up to total error 0.1 = 8 pieces
Example: Bouncing Ball

Clustering up to total error 1.0 = 2 pieces
Example: Controlled Helicopter

- 28-dim model of a Westland Lynx helicopter
 - 8-dim model of flight dynamics
 - 20-dim continuous H_∞ controller for disturbance rejection
 - stiff, highly coupled dynamics

Example: Helicopter

- 28 state variables + clock

CAV’11: 1440 sets in 5.9s
1440 time steps
Example: Helicopter

- 28 state variables + clock

HSCC'13: 32 sets in 15.2s (4.8s clustering)
2 -- 3300 time steps, median 360

convex in 29 dimensions!
Example: Chaotic Circuit

- piecewise linear Rössler-like circuit
 Pisarchik, Jaimes-Reátegui. ICCSDS’05
- added nondet. disturbances
- 3 variables, hard!
Case Study: Electro-Mechanical Brake

Frehse, Hamann, Quinton, Woehrle. Formal analysis of timing effects on closed-loop properties of control software. RTSS'14
Case Study: Electro-Mechanical Brake

- **Controller Implementation**
 - discrete time
 - fixed-point arithmetic
 - multi-tasking processor: *scheduling with uncertain frequency*
 - worst-case analysis too conservative
Case Study: Electro-Mechanical Brake

(a) Timing analysis of software
- Software Timing model
- Abstract Scheduler Model
 - activate
 - terminate

(b) Closed-loop verification
- Closed-loop properties
 - Plant
 - Continuous Software Model

(c) Closed-loop verification including timing effects
- Closed-loop properties
 - Plant
 - Discretized Software Model
 - Scheduler Property Model
 - read
 - write
Case Study: Electro-Mechanical Brake

- **Typical Worst-Case Execution Time**
 - limit missed schedules per time interval

<table>
<thead>
<tr>
<th># deadline misses</th>
<th>consecutive executions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>56</td>
</tr>
</tbody>
</table>

\[
\text{deadline_miss} \\
\text{time}_0 \geq 1 \land \text{time}_1 \geq \text{miss}(2) \land \text{time}_2 \geq \text{miss}(3) \\
\land \text{time}_3 \geq \text{miss}(4) \land \text{time}_4 \geq \text{miss}(5) \\
\text{time}_4 := \text{time}_3 \land \text{time}_3 := \text{time}_2 \land \text{time}_2 := \text{time}_1 \\
\text{time}_1 := \text{time}_0 \land \text{time}_0 := 0
\]

\[
\text{NoMiss} \\
0 \leq \text{time}_0 \leq 1 \\
\text{time}_0' = 1/P \land \text{time}_1' = 1/P \land \text{time}_2' = 1/P \\
\land \text{time}_3' = 1/P \land \text{time}_4' = 1/P
\]

\[
\text{deadline_met} \\
\text{time}_0 \geq 1 \\
\text{time}_0 := 0
\]
Case Study: Electro-Mechanical Brake

caliper position

\[x \quad \text{[dm]} \]

\[t \quad \text{[ms]} \]
Case Study: Electro-Mechanical Brake

- caliper position
- only failure – hard to detect

artificial failure case
(inconsistent with classical theory)
Case Study: Electro-Mechanical Brake

physical properties: maximum impulse on contact (measured via current)
Outline

- Modeling with Hybrid Automata
- Reachability versus Simulation
- Computing with High-Dimensional Sets
- SpaceEx Verification Platform
SpaceEx Verification Platform

Browser-based GUI

- 2D/3D output
- runs remotely
SpaceEx Reachability Algorithms

PHAVer
- constant dynamics (LHA)
- formally sound and exact

Support Function Algo
- many continuous variables
- low discrete complexity

Simulation
- nonlinear dynamics
- based on CVODE
SpaceEx Model Editor

Components = Hybrid Automata
– real-values variables
– ODE, linear DAE
SpaceEx Model Editor

Block diagrams connect components
- templates, nesting
Control System Models

● 1-to-1 correspondence with standard block diagrams
● Library of standard control system blocks

● Carnot Project 2014: semi-automatic translation from Matlab/Simulink to SpaceEx
Conclusions

● Reachability with 100+ variables
 – convex sets as support functions

● Convexification with semi-template data structures
 – total approximation error measurable

● Ongoing Work
 – abstraction refinement (directions) - HSCC’15
 – extension to nonlinear dynamics

spaceex.imag.fr