ARTEMIS-IA
Strategic Research Agenda 2016

Workshop CPSoS: The next Challenge

Hannover Fair, April 26th 2016

Jürgen Niehaus
SafeTRANS
Overview

• Introduction: ARTEMIS and ARTEMIS-IA

• ARTEMIS-IA Strategic Research Agenda

• Cyber-Physical Systems of Systems in the ARTEMIS-IA SRA

• Conclusion
ARTEMIS

- **ARTEMIS** – Greek goddess
 - Goddess of chastity, virginity, the hunt, the moon and the natural environment
 - One of the most widely venerated of the ancient Greek deities

- **ARTEMIS** – European Technology Platform
 - Advance **Research and Technology in Emb**edded Intelligence and Cyber-Physical Systems
 - ETP: Platform/Forum for all stakeholders in Embedded and Cyber-Physical Systems in Europe
 - Networking with experts
 - Discuss and harmonize Research Priorities
 - Develop **Strategic Research Agenda**
 - R&D Project Incubation
 - ...

 - Organized and supported by the ARTEMIS Industry Association
ARTEMIS-IA

• ARTEMIS Industry Association
 – Not-for-profit association
 – Members:
 • Founding: Daimler, Nokia, Philips, STMicroelectronics, Thales
 • Today: ~ 170 members (Large Industry, SME, Research)
 – Two purposes

• Community building: ARTEMIS ETP
 – Organize Meetings, Workshops
 » Spring Event, Summer Camp, Project Brockerage, Technology Conference,…
 – Organize Working Groups
 » On Standardization, Platforms, Tools,…
 – Issue and regularly update Strategic Research Agenda
 – Represent members to European Commissions, Funding programmes, etc.

• Be the ‘private partner’ (~ represent its members) in Joint Undertakings ARTEMIS and ECSEL
 – Large Scale R&D funding programmes
 – Large Scale R&D funding programme (several hundreds Mio Euro funding)
 – ARTEMIS: 2008-2014
 – ECSEL: 2014-2020
Private Partner in JU ECSEL

Private Association(s)
- General Assembly
- Steering Board
- Working Groups

Joint Undertaking
- Governing Board
 Strategic planning
 Supporting Committee
 Rules of operation, supervision
- Public Authorities Board
 Calls, evaluation and funding
- Private Members Board
 Draft MASP, AWP
- Executive Director
 Secretariat, operations and finances

Public Authorities
- JU Member States
- EC

Industry (incl. SME) & Research actors
SRA and R&D funding programmes

<table>
<thead>
<tr>
<th></th>
<th>ETP AENEAS VMS</th>
<th>ETP ARTEMIS-IA SRA 2016</th>
<th>ETP EPoSS SRA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECSEL-JU</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MASRIA and Annual Calls</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Programme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EUREKA (esp. CATRENE and ITEA3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roadmap</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>National / Regional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roadmaps (<->)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ARTEMIS SRA 2016

The Pathway to the Digital Transformation
An Opportunity for Europe

- Third edition of the SRA (after 2007 and 2011 + 2013 addendum)
- Published: April 2016
- Presented to European Commission and National Authorities during CPSWeek 2016 (April 11-14, 2016, Vienna)
- Download at http://www.artemis-ia.eu
SRA content

1. Introduction
2. The new rationale: digital transformation
3. The ARTEMIS Vision, Ambition, and Main Objectives
4. The Digital Transformation in economic and societal challenges

5. ARTEMIS Innovation Strategy and Research Priorities
 - 5.1 ARTEMIS Priority Targets
 - 5.2 Innovation Strategy
 - 5.3 Strategy Implementation
 - 5.3.1 Cross domain Approach
 - 5.3.2 Strategic Research Challenges

6. Innovation environment context – Make it Happen
The Applications Drivers: CPS in...
Strategy implementation: The Cross-domain approach

To share communalities and synergies to overcome the fragmentation and create critical mass for the investments and to embrace the technology challenges.
Strategic Research Priorities

- CPS Architectures Principles
- Design Methods, Tools, Virtual Engineering
- Trust, security, Robustness and Dependability
- Autonomous and Robotic Systems and Cooperation
- Seamless Connectivity and Interoperability
- Cyber-Physical System of Systems
- Computational Blocks
- Digital Platforms
- Basic Research, fundamental Research
ARTEMIS Innovation Strategy and Research Priorities

Example: Challenges Cyber-Physical System of Systems

CYBER-PHYSICAL SYSTEMS (CPS)

TIGHT INTERACTION
- Many distributed, real-time computing systems and physical systems

Examples
- Airplanes
- Cars
- Ships
- Building with advanced HVAC controls
- Manufacturing plants
- Power plants
- ...

PHYSICAL CONNECTIONS
- Material/energy streams
- Shared resources (e.g., roads, airspace, rails, steam)
- Communication networks

EXAMPLES OF CYBER-PHYSICAL SYSTEMS OF SYSTEMS

- Integrated large production complexes
 - Major source of employment and income in Europe
 - Major consumer of energy and raw materials
 - Many interconnected production plants that are operated mostly autonomously with distributed management structures
- Transportation networks (road, rail, air, maritime, ...)
 - Vital to mobility of EU citizens and the movement of goods
 - Large integrated infrastructures with complex interactions, also across national borders
 - Involve multiple organizational and political structures
- Many more examples, e.g., smart (energy, water, gas, ...) networks, supply chains of manufacturing

SYSTEMS OF SYSTEMS (SOS)

MANY INTERACTING COMPONENTS
- Large industrial sites with many production units
- Large networks of systems (electric grid, traffic systems, water distribution)

Physical Connections
- Continuous addition, removal and modification of hardware and software over the complete life cycle (often many years)

CONTINUOUS EVOLUTION

- MANY DYNAMIC RECONFIGURATION COMPONENTS
- Components may...
 - Be switched on and off (as in living cells)
 - Enter or leave (as in air traffic control)

EMERGING BEHAVIOUR
- The overall SoS shows behaviours that do not result from simple interactions of subsystems
- Usually not desired in technical systems, may lead to reduced performance or shut-downs

Examples
- Power oscillations in the European power grid
- Oscillations in supply chains

PARTIAL AUTONOMY
- Local actors with local authority and priorities
- Autonomous systems...
 - Cannot be fully controlled on the SoS level
 - Need incentives towards global SoS goals

Examples
- Local energy generation companies
- Process units of a large chemical site
ARTEMIS Innovation Strategy and Research Priorities

Example: High level Research Priorities CPSoS

- Decision structures and system architectures
- Self-organisation, structure formation, and emerging behaviour in technical systems of systems
- Real-time monitoring, exception handling, fault detection and mitigation of faults and degradation
- Adaptation and integration of new components
- Humans in the loop and collaborative decision making
- Trust in large distributed systems
Conclusion

• ARTEMIS Strategic Research Agenda
 – R&D strategy and priority topics for Embedded Intelligence and Cyber Physical Systems
 – Cyber Physical Systems of Systems: Challenging topic with high visibility within the SRA 2016

• Way forward
 – Disseminate (refined) R&D topics to various European and National Funding Programmes
 – Implement SRA by multitude of strategically aligned R&D projects
 – Technology transfer and result dissemination through ARTEMIS Community with its Centers of Innovation Excellence.

You are welcome to join!
Thank you