(Towards) Autonomous shuttles in automated material handling systems

26 April 2016
Joost van Eekelen | Hannover Messe – CPSoS The Next Challenge
Reliable partner for value-added automated material handling solutions

Baggage handling

Warehouse automation

Parcel and postal
About Vanderlande: Company profile

<table>
<thead>
<tr>
<th>Global market leader</th>
<th>Established since 1949</th>
<th>3,900 employees</th>
<th>1 Billion turnover</th>
</tr>
</thead>
<tbody>
<tr>
<td>innovative systems</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>intelligent software</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>life-cycle services</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Baggage Handling Systems
- **8.8 million bags per day**
- **600 airports including 14 of the world’s top 20**
 - Atlanta Airport
 - London Heathrow Airport
 - Hong Kong Int. Airport
 - Amsterdam Airport Schiphol

Warehouse Automation
- **12 of Europe’s top 20 e-commerce companies**
 - Amazon
 - TESCO
 - Zalando
 - ASDA

Parcel and Postal Services
- **20 Million parcels sorted every day**
- **4 largest parcel and postal companies**
 - UPS
 - Deutsche Post DHL
 - TNT
 - FedEx
Joost van Eekelen

- Mechanical Engineering MSc at the Eindhoven University of Technology

- Systems Engineering PhD at the Eindhoven University of Technology

- Vanderlande (Veghel, The Netherlands)
 - Logistics Simulation Engineer (2007-2011)
 - System/Product Architect (2011-)

- Expert in
 - Systems modeling (abstract, conceptual)
 - Algorithmics
 - Robotics
Warehousing – order fulfillment strategies

Man to goods
- Heavy work/lifting
- Dangerous

Goods to man
- Ergonomically friendly

How to deliver the goods to the workstation?
ADAPTO shuttle

- Automatically stores and retrieves totes with products/parts
- Moves in 2D through racks
- Uses lifts to reach other levels (→ 3D)
- Is re-charged inside the lift
- Uses WiFi to communicate with central controller

CPSoS ?

- Dynamic reconfiguration (addition/removal of shuttles, e.g. for maintenance)
- Many interactions, both “cyber” and “physical”.
- Partial autonomous: motion control
ADAPTO Big Five

Scalability
- Step by step expansion
- Throughput flexibility
- Layout flexibility

Availability
- System availability
- Product availability
- Fast trouble shooting

Cost Efficiency
- Modular design
- Lower footprint
- Lower operational costs

Maintainability
- Off-line maintenance

Sustainability
- Reusable and recyclable materials
- Low energy consumption, little moving parts
CPSoS challenges & opportunities

> Awareness
 - Shuttles are aware of each other via Central traffic control. This has its limitations.
 - Future possible extension: have shuttles communicate/collaborate with each other to increase density.

> Shuttle sharing
 - Some companies have seasonal peaks. A ‘common shuttle pool’ might be an interesting business model.
 - Consequences for interoperability, product generation compatibility, ease of re-configuration.

> Predictive maintenance
 - Use sensor (big!) data to predict failures and schedule preventive maintenance, instead of periodic maintenance.

> Sustainability
 - Make shuttle even more light-weight.
 - Upcoming battery technologies.
Many thanks to ...

the CPSoS consortium for giving the opportunity to present here in Hannover.

> Professor Sebastian Engell
> Doctor Michel Reniers
VANDERLANDE